Topic 7B - Integrated Rate Laws

Reaction Orders

Cannot, in general, be determined from the reaction stoichiometry

Must be experimentally determined

Types of Reaction Orders

Zero-Order

Rate not dependent on [A]

Differential expression:

Rate =
$$k_0 [A]^0 = k_0 = -\frac{1}{a} \frac{d[A]}{dt}$$

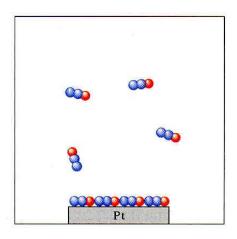
Integrated expression:

$$[A] = -ak_0t + [A]_i$$

Thus, a plot of [A] vs. t yields a straight line, with Slope = -ak₀ and Intercept = [A]_i

Example:

$$2 N_2 O \rightarrow 2 N_2 + O_2$$
 (over Pt catalyst)



(a)



 $\Theta = N_2O$

1 of 14 12/21/2016 3:47 PM

(b)

Topic 7B - Integrated Rate Laws

The decomposition reaction $2N_2O(g) \longrightarrow 2N_2(g) + O_2(g)$ takes place on a platinum surface. Although $[N_2O]$ is twice as great in (b) as in (a), the rate of decomposition of N_2O is the same in both cases since the platinum surface can accommodate only a certain number of molecules. As a result, this reaction is zero order.

First-Order

Rate dependent on [A]¹

Differential expression:

Rate =
$$\frac{1}{a} \frac{d[A]}{dt} = -k_1[A]$$

Integrated expression:

$$ln[A] = -ak_1t + ln[A]_i$$

Thus, a plot of In [A] vs. t yields a straight line, with Slope = -ak₁ and Intercept = In [A]₁

Example:

$$N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2} O_2$$

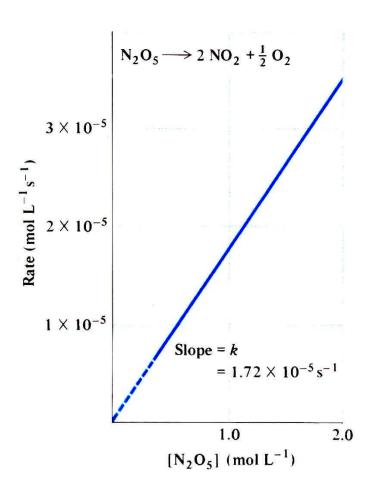
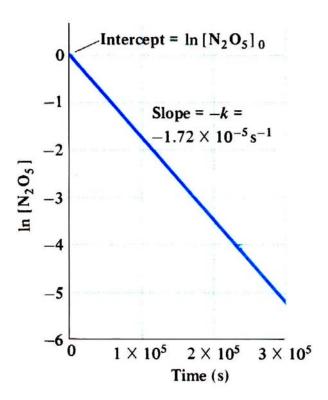


Figure 11-4

The rate of decomposition of $N_2O_5(g)$ at 25°C is proportional to its concentration. The slope of this line is equal to the rate constant k for the reaction.

Rate =
$$\frac{d[N_2O_5]}{dt} = -k[N_2O_5]$$



$$\begin{split} &\ln \frac{[\mathbf{N}_2 \mathbf{O}_5]}{[\mathbf{N}_2 \mathbf{O}_5]_0} = -\mathbf{k}\mathbf{t} \\ &\ln [\mathbf{N}_2 \mathbf{O}_5] = -\mathbf{k}\mathbf{t} + \ln [\mathbf{N}_2 \mathbf{O}_5]_0 \end{split}$$

Figure 11-5

In a first-order reaction such as the decomposition of N_2O_5 , a graph of the natural logarithm of the concentration against time is a straight line, the negative of whose slope gives the rate constant for the reaction.

Second-Order

Rate dependent on [A]2

Differential expression:

Rate =
$$\frac{1}{a} \frac{d[A]}{dt} = -k_2[A]^2$$

Integrated expression:

$$\frac{1}{[A]} = ak_2t + \frac{1}{[A]_1}$$

Thus, a plot of $[A]^{-1}$ vs. t yields a straight line, with Slope = ak_2 and Intercept = $[A]_i^{-1}$

Example:

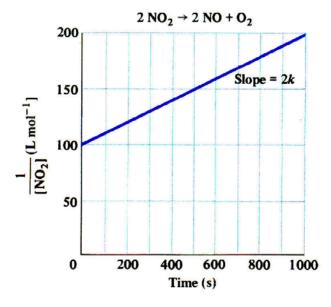
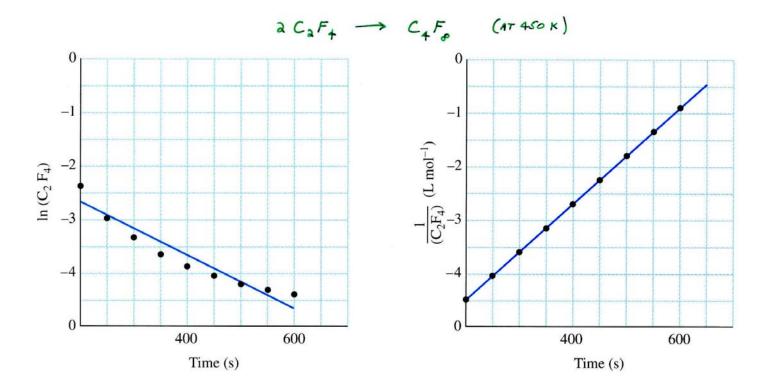


Figure 11-7

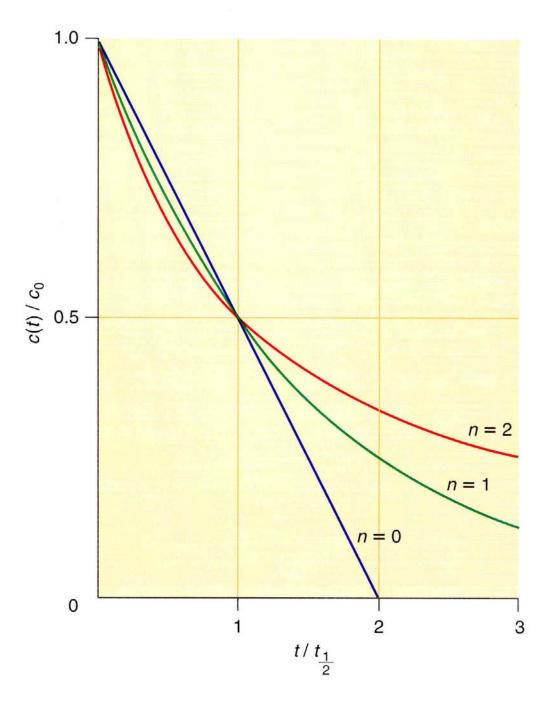
For a second-order reaction such as $2 \text{ NO}_2 \rightarrow 2 \text{ NO} + \text{O}_2$, a graph of the reciprocal of the concentration against time is a straight line with slope 2k.



Summary of the Kinetics for Reactions of the Type aA→Products That Are Zero, First, or Second Order in [A]					
	Order				
	Zero	First	Second		
Rate law	Rate = k	Rate = $k[A]$	Rate = $k[A]^2$		
Integrated rate law	$[A] = -kt + [A]_0$	$\ln[A] = -kt + \ln[A]_0$	$\frac{1}{[\mathbf{A}]} = kt + \frac{1}{[\mathbf{A}]_0}$		
Plot needed to give a straight line	[A] versus t $k = \frac{IAJ}{L}$	$\ln[A] \text{ versus } t$ $k = \frac{1}{t}$	$\frac{1}{[A]} \text{ versus } t$ $k = \frac{1}{[A] + 1}$		
Relationship of rate constant to the slope of straight line	Slope = $-k$	Slope = $-k$	Slope = k		
Half-life	$t_{1/2} = \frac{[\mathbf{A}]_0}{2k}$	$t_{1/2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$		

Summary of the kinetics for reactions of the type aA → Products that are zero, first, or second order in [A]

Figure 15.3: Time Profiles for Different Orders in the Rate Law



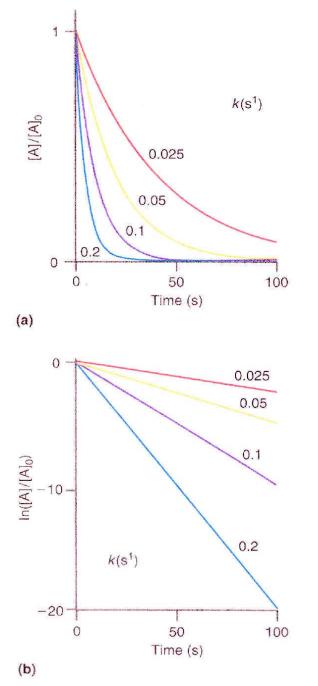
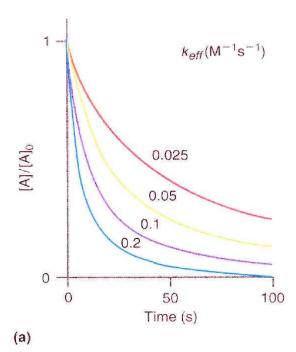


FIGURE 18.4

Reactant concentration as a function of time for a first-order chemical reaction as given by Equation (18.27). (a) Plots of [A] as a function of time for various rate constants k. The rate constant of a given curve is provided in the figure. (b) The natural log of reactant concentration as a function of time for a first-order chemical reaction as given by Equation (18.28).



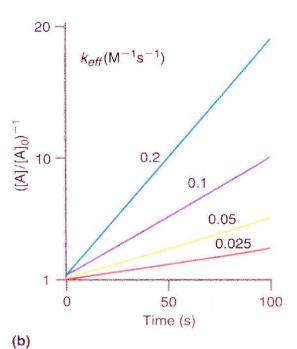


FIGURE 18.5

Reactant concentration as a function of time for a type I second-order chemical reaction. (a) Plots of [A] as a function of time for various rate constants. The rate constant of a given curve is provided in the figure. (b) The inverse of reactant concentration as a function of time as given by Equation (18.34).

Half-Lives

Zero-Order:

$$[A] = -ak_0t + [A]_i$$

$$At t_{1/2}, [A] = \frac{[A]_i}{2}$$

$$Thus, \frac{[A]_i}{2} - [A]_i = -ak_0t_{1/2} \text{ and }$$

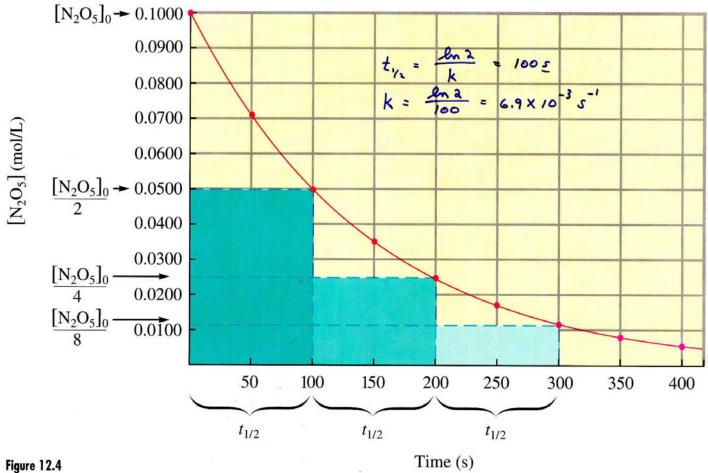
$$t_{1/2,0} = \frac{[A]_i}{2ak_0}$$

First-Order:

$$\begin{split} & \text{In[A]} = -ak_1t + \text{In[A]}_i \\ & \text{At } t_{1/2}, \ \ [A] = \frac{[A]_i}{2} \\ & \text{Thus, } \ \ & \text{In} \frac{[A]_i}{2[A]_i} = -ak_1t_{1/2,1} \ \ \text{and} \\ & t_{1/2,1} = \frac{\text{In2}}{ak_1} = \frac{0.693}{ak_1} \end{split}$$

Second-Order:

$$\frac{1}{[A]} = ak_2t + \frac{1}{[A]_i}$$
At $t_{1/2}$, $[A] = \frac{[A]_i}{2}$
Thus, $\frac{2}{[A]_i} + \frac{1}{[A]_i} = -ak_2t_{1/2}$ and $t_{1/2,2} = \frac{1}{ak_2[A]_i}$



Constant half life for first-order process

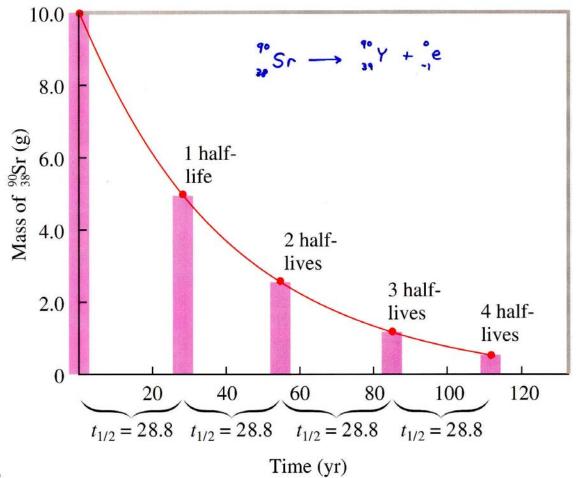


Figure 21.3 A schematic showing the half life for ⁹⁰Sr

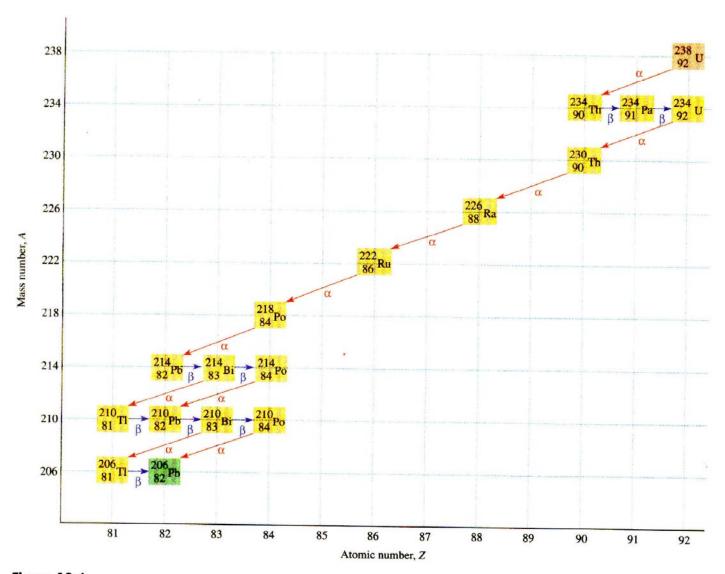


Figure 12-6
The radioactive nuclide ²³⁸U decays via a series of alpha and beta emissions to the stable nuclide ²⁰⁶Pb.

Nuclide	t _{1/2}	Decay Mode†	Daughter
³ H (tritium)	12.26 years	e ⁻	³ ₂ He
⁸ ₄ Be	$\sim 1 \times 10^{-16} \text{s}$	α	4He
¹⁴ ₆ C	5730 years	e ⁻	14N
²² ₉ Na	2.601 years	e^+	²² Ne
²⁴ Na	15.02 hours	e ⁻	²⁴ / ₁₂ Mg
³² P	14.28 days	e^-	32S
35 16S	87.2 days	e ⁻	35Cl
³⁶ Cl	3.01×10^5 years	e ⁻	36 18Ar
40K	1.28×10^9 years	$\int e^{-}(89.3\%)$	40Ca
*		E.C. (10.7%)	40 18Ar
⁵⁹ Fe	44.6 days	e ⁻	59Co
60 27Co	5.27 years	e ⁻	60 28 Ni
90 38Sr	29 years	e ⁻	90 39 Y
109 48Cd	453 days	E.C.	¹⁰⁹ Ag
125 53I	59.7 days	E.C.	¹²⁵ ₅₂ Te
131 ₅₃ I	8.041 days	e ⁻	¹³¹ ₅₄ Xe
¹²⁷ Xe	36.41 days	E.C.	¹²⁷ I
137 57La	$\sim 6 \times 10^4$ years	E.C.	¹³⁷ ₅₆ Ba
²²² ₈₆ Rn	3.824 days	α	²¹⁸ Po
²²⁶ ₈₈ Ra	1600 years	α	²²² ₈₆ Rn
232 90 Th	$1.40 \times 10^{10} \text{ years}$	α	²²⁸ ₈₈ Ra
²³⁵ U	7.04×10^8 years	α	²³¹ ₉₀ Th
²³⁸ U	$4.468 \times 10^9 \text{ years}$	α	²³⁴ Th
²³⁹ Np	2.350 days	e^{-}	²³⁹ ₉₄ Pu
²³⁹ ₉₄ Pu	2.411×10^4 years	α	235U

† E.C. stands for electron capture; e^+ , for positron emission; e^- , for beta emission; α , for alpha emission.

Multi-Reactant Reactions

Reactions having more than one reactant will exhibit a separate reaction order in each reactant:

for which

Rate =
$$-\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = -\frac{1}{c}\frac{d[C]}{dt} = k[A]^{x}[B]^{y}[C]^{z}$$

in which x, y, and z are the reaction orders in reactants A, B, and C, respectively. The <u>overall</u> reaction order is x + y + z.

For the following reaction, for example, the experimental data below were collected:

$$BrO_3^-(aq) + 5 Br^-(aq) + 6 H_3O^+(aq) \rightarrow 3 Br_2(aq) + 9 H_2O(l)$$

Experiment	Initial concentration (mol·L ⁻¹)			Initial rate
	BrO ₃	Br^-	H ₃ O ⁺	$((\mathbf{mmol}\ \mathbf{BrO_3}^{-})\cdot\mathbf{L}^{-1}\cdot\mathbf{s}^{-1})$
1	0.10	0.10	0.10	1.2
2	0.20	0.10	0.10	2.4
3	0.10	0.30	0.10	3.5
4	0.20	0.10	0.15	5.5

The kinetic rate law that is consistent with these data is:

Rate =
$$k [BrO_3^-]^1 [Br^-]^1 [H_3O]^2$$

Thus, the reaction is first-order in both BrO₃⁻ and Br⁻ and second-order in H₃O⁺, and fourth-order overall.

The overall fourth-order rate constant can be calculated from the experimental data as follows:

$$k = \frac{\text{Rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}_3\text{O}^+]^2}$$

$$= \frac{5.5 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}}{(0.20 \text{ mol} \cdot \text{L}^{-1}) \times (0.10 \text{ mol} \cdot \text{L}^{-1}) \times (0.15 \text{ mol} \cdot \text{L}^{-1})^2}$$

$$= 12 \text{ L}^3 \cdot \text{mol}^{-3} \cdot \text{s}^{-1}$$